High accuracy voltage detection

Battery Voltage Measurement IC AN84910UA

Overview
AN84910UA is an IC used to measure battery voltages. This IC can measure a maximum of 53V of common input voltage of 10 batteries connected in series and therefore ideal for applications that require high voltage measurement such as in car battery applications. Moreover, the IC has a built-in source necessary for the peripheral circuits. Booting and monitoring of the system can be achieved easily with the combination of microcomputer.

Features
- Supports up to 10 Cell Batteries 4.5 V to 53 V
- Voltage Detection Precision (Total of 10 Cell) Measurement accuracy: ±5 mV
- Cell • Balancing • Signal Output Control for Switch
- Temperature Measurement Pin : 2-ch
- Embedded with 14 bit delta sigma ADC
- Shutdown mechanism
- General purpose digital input/Output (GPIO) 2-ch
- Serial control by means of microcomputer I/F
- Possible to control serial I/F with AN84901(Monitoring IC) by means of GP SPI Pin.
- Possible to connect to daisy chain

Applications
- Voltage measurement for lithium-ion battery, etc (ex. HEV/EV)

Block Diagram
2nd Protector for High Voltage Battery Pack

Battery Voltage Monitoring IC **AN84911UA**

Overview
AN84911UA is an IC use to monitor battery voltage. The IC can monitor a maximum of 53 V of a common input voltage of 10 batteries connected in series and therefore ideal for applications that require high voltage monitoring such as in car battery applications. Moreover, threshold voltages for detection of over and under voltages can be changed using external pin and an ALARM signal will occur when abnormal voltage is detected.

Features
- Supports up to 10 cells. 4.5 V to 53 V
- OVP voltage range 4.08 V to 4.43 V with variable step of 50mV 3-bits
- UVP voltage range 1.75 V to 1.90 V with variable step of 50mV 2-bits
- Shutdown function
- Possible to control the serial I/F through SPI I/F
- Can be connected to daisy chain.

Applications
- Voltage measurement for lithium-ion battery, etc (ex. HEV / EV)

Block Diagram

![Block Diagram](image-url)
High accuracy voltage detection
Multicell Battery Stack Monitor IC AN49501A

Overview
AN49501A is a multicell battery stack monitor IC. This IC, capable of voltage measurement of up to 10 battery cells connected in series with maximum 45-V input common mode voltage, is optimized for applications such as batteries for electrical bicycles requiring high-voltage operation. With built-in power supplies required for peripheral circuits, this IC enables waking up and monitoring of system and battery charging/discharging easily in combination with a microcomputer.

Features
- Voltage measurement of up to 10 battery cells
- High accuracy voltage detection (total 10 cells)
 Measurement accuracy: ±10 mV
- Built-in 14-bit delta-sigma ADC
- High-side n-channel MOSFET control for charge and discharge
- Serial control with microcomputer interface

Applications
- Voltage measurement for lithium-ion battery, etc
 (For Pedelec / Scooter / Power Tool)

Block Diagram
Contact

+ Exhibition Special Website
 ?utm_medium=flyer&utm_campaign=ew2013&utm_source=flyer

+ Direct access EU sales site:
 Europe Sales Office
 Panasonic Industrial Devices Sales Europe GmbH (PIDSEU) /
 Semiconductor Sales and Marketing
 Tel: 49-89-46159-119 Fax: 49-89-46159-195

+ Global access information:
Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.

(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.

(3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.
Consult our sales staff in advance for information on the following applications:
- Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.

(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.

(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20100202